

Pushable, Peekable Iterators

[image: _images/main.svg]
 [https://dl.circleci.com/status-badge/redirect/gh/sfkleach/pushable/tree/main][image: Documentation Status]
 [https://pushable.readthedocs.io/en/latest/?badge=latest]This is a Python package that provides a wrapper class Pushable that turns
ordinary iterators into “peekable & pushable” iterators. Pushable iterators act
like dynamically expanding queues, allowing you to peek ahead or push items back
onto a queue that is only expanded as far as necessary.

Click here for the full API.

Basic Usage

We can turn any iterable/iterator into a pushable iterator using the constructor.

from pushable import Pushable
count_up = Pushable(range(0, 5))

We can use it like an ordinary iterator:

print(next(count_up))
Prints 0

Or we can look-ahead to see what is coming:

whats_up_next = count_up.peek()
print(whats_up_next)
Print 1
print(next(count_up))
Also prints 1 because peek does not remove the item from the internal queue.

We can even push back items onto it:

count_up.push("cat")
count_up.push("dog")
print(list(count_up))
Prints 'dog', 'cat', 2, 3, 4

Examples

From an iterator such as a file-object, which will iterate over the lines in a file, create a peekable/pushable iterator. This can be useful for example when we want to know if the iterator still has contents or want a sneak peek at what is coming.

from pushable import Pushable

def read_upto_two_blank_lines(filename):
 with open(filename) as file:
 plines = Pushable(file)
 # Pushable iterators can be used as booleans in the natural way.
 while plines:
 line = next(plines)
 # peekOr makes it safe to look ahead.
 if line == '\n' and plines.peekOr() == '\n':
 # Two blank lines encountered.
 break
 else:
 yield line

It is also useful to perform “macro-like” transformation.

from pushable import Pushable

def translate(text, translations):
 ptokens = Pushable(text.split())
 while ptokens:
 token = next(ptokens)
 if token in translations:
 ptokens.multiPush(*translations[token].split())
 else:
 yield token

print(' '.join(translate('My name is MYNAME', {'MYNAME':'Fred Bloggs'})))
Prints: My name is Fred Bloggs

More Complex Uses

In addition to peeking and popping items, which risks raising a
StopIteration exception if there’s nothing left on the internal queue, we
can utilise peekOr and popOr to deliver a default value instead. The
default value is passed as an optional parameter and falls back to None.

We can also peek and pop multiple values using multiPeekOr and multiPopOr,
which return generators. These support skipping over values so that you can
get the 2nd and 3rd value without getting the first e.g.

(second, third) = Pushable("pqr").multiPop(skip=1, count=2)
print(second, third)
Prints: q r

Lastly, we can push multiple items with multiPush:

count_up.multiPush("cat", "dog", "rabbit")
print(list(count_up))
Prints: ['cat', 'dog', 'rabbit']

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pushable	

Index

 L
 | M
 | P
 | S

L

 	
 	lenAtLeast() (pushable.Pushable method)

M

 	
 	
 module

 	pushable

 	multiPeek() (pushable.Pushable method)

 	
 	multiPeekOr() (pushable.Pushable method)

 	multiPop() (pushable.Pushable method)

 	multiPopOr() (pushable.Pushable method)

 	multiPush() (pushable.Pushable method)

P

 	
 	peek() (pushable.Pushable method)

 	peekOr() (pushable.Pushable method)

 	pop() (pushable.Pushable method)

 	popOr() (pushable.Pushable method)

 	
 	push() (pushable.Pushable method)

 	
 pushable

 	module

 	Pushable (class in pushable)

S

 	
 	skipPeek() (pushable.Pushable method)

 	skipPeekOr() (pushable.Pushable method)

 	
 	skipPop() (pushable.Pushable method)

 	skipPopOr() (pushable.Pushable method)

pushable

	pushable package
	Module contents
	Pushable
	Pushable.lenAtLeast()

	Pushable.multiPeek()

	Pushable.multiPeekOr()

	Pushable.multiPop()

	Pushable.multiPopOr()

	Pushable.multiPush()

	Pushable.peek()

	Pushable.peekOr()

	Pushable.pop()

	Pushable.popOr()

	Pushable.push()

	Pushable.skipPeek()

	Pushable.skipPeekOr()

	Pushable.skipPop()

	Pushable.skipPopOr()

pushable package

Module contents

	
class pushable.Pushable(source)

	Bases: Iterator[T]

Wraps an iterator so that it supports peeking and pushing, much like
a LIFO queue (aka stack). Another way of looking at it is a lazy queue
that supports pushbacks.

This is focussed on the use-case of providing modest look-ahead capabilities
on a stream of tokens.

	
lenAtLeast(N: int) → bool

	Are there at least N items in the queue? Does not change the queue.

	
multiPeek(skip: int = 0, count: int = 1)

	Returns zero, one or more items from the front of the queue, as an
iterator, optionally skipping the first N items. There must be at least
N+count items or a RuntimeError will be raised. The queue will not be
affected, although it may be partly instantiated.

	
multiPeekOr(default=None, skip: int = 0, count: int = 1) → Iterator[Any]

	Returns zero, one or more items from the front of the queue as an iterable, optionally
skipping the first N items. If there are insufficient items in the queue,
the default value is substituted sufficient to make up the numbers.
The queue will not be affected, although it will likely be partly
instantiated.

	
multiPop(skip: int = 0, count: int = 1) → Iterator[Any]

	Removes and returns zero, one or more items from the front of the queue
as an iterator, optionally skipping the first N items. There must be at
least N+count items or a RuntimeError will be raised.

	
multiPopOr(default=None, skip: int = 0, count: int = 1) → Iterator[Any]

	Removes and returns zero, one or more items from the front of the queue, optionally
skipping the first skip+count items. If there are insufficient items
available then the default value is substututed as many times as needed.

	
multiPush(*values)

	Pushes one or more items onto the queue in reverse order, so that the
first item becomes the new head of the queue.

	
peek() → T

	Gets an item from the head of the queue without affecting the
queue. There must be at least one item or StopIteration is raised.

	
peekOr(default=None) → Any

	Gets an item from the head of the queue without affecting the
queue. If no item is available the default value is returned.

	
pop() → T

	Gets an item from the head of the queue, removing it from the
queue. If there are less than 1 item, raise StopIteration. This
is a synonym for __next__.

	
popOr(default=None) → Any

	Gets an item from the head of the queue, removing it from the
queue. If there is less than 1 item, return the supplied default value
instead.

	
push(value)

	Pushes one item onto the queue, so that it is the new head of the queue.

	
skipPeek(skip: int = 0) → T

	Gets an item from the head of the queue without affecting the
queue, optionally skipping the first N items. There must be at least
N+1 items or StopIteration will be raised, although the queue will be
unaffected.

	
skipPeekOr(default=None, skip: int = 0) → Any

	Gets an item from the head of the queue without affecting the
queue, optionally skipping the first N items. If there are less
than N+1 items, the default is returned.

	
skipPop(skip: int = 0) → T

	Gets an item from the head of the queue, removing it from the
queue, optionally removing the preceding N items. If there are less
than N+1 items, raise StopIteration.

	
skipPopOr(default=None, skip: int = 0) → Any

	Gets an item from the head of the queue, removing it from the
queue, optionally removing the preceding N items. If there are less
than N+1 items, return the supplied default value.

 nav.xhtml

 Table of Contents

 		
 Pushable, Peekable Iterators

_static/minus.png

_static/plus.png

_static/file.png

