
pushable
Release 0.1.0

Stephen Leach

Aug 19, 2023

CONTENTS:

1 Basic Usage 3

2 Examples 5

3 More Complex Uses 7

4 Indices and tables 9

i

ii

pushable, Release 0.1.0

This is a Python package that provides a wrapper class Pushable that turns ordinary iterators into “peekable & pushable”
iterators. Pushable iterators act like dynamically expanding queues, allowing you to peek ahead or push items back
onto a queue that is only expanded as far as necessary.

Click here for the full API.

CONTENTS: 1

https://dl.circleci.com/status-badge/redirect/gh/sfkleach/pushable/tree/main
https://pushable.readthedocs.io/en/latest/?badge=latest
pushable.html

pushable, Release 0.1.0

2 CONTENTS:

CHAPTER

ONE

BASIC USAGE

We can turn any iterable/iterator into a pushable iterator using the constructor.

from pushable import Pushable
count_up = Pushable(range(0, 5))

We can use it like an ordinary iterator:

print(next(count_up))
Prints 0

Or we can look-ahead to see what is coming:

whats_up_next = count_up.peek()
print(whats_up_next)
Print 1
print(next(count_up))
Also prints 1 because peek does not remove the item from the internal queue.

We can even push back items onto it:

count_up.push("cat")
count_up.push("dog")
print(list(count_up))
Prints 'dog', 'cat', 2, 3, 4

3

pushable, Release 0.1.0

4 Chapter 1. Basic Usage

CHAPTER

TWO

EXAMPLES

From an iterator such as a file-object, which will iterate over the lines in a file, create a peekable/pushable iterator.
This can be useful for example when we want to know if the iterator still has contents or want a sneak peek at what is
coming.

from pushable import Pushable

def read_upto_two_blank_lines(filename):
with open(filename) as file:
plines = Pushable(file)
Pushable iterators can be used as booleans in the natural way.
while plines:

line = next(plines)
peekOr makes it safe to look ahead.
if line == '\n' and plines.peekOr() == '\n':
Two blank lines encountered.
break

else:
yield line

It is also useful to perform “macro-like” transformation.

from pushable import Pushable

def translate(text, translations):
ptokens = Pushable(text.split())
while ptokens:
token = next(ptokens)
if token in translations:

ptokens.multiPush(*translations[token].split())
else:

yield token

print(' '.join(translate('My name is MYNAME', {'MYNAME':'Fred Bloggs'})))
Prints: My name is Fred Bloggs

5

pushable, Release 0.1.0

6 Chapter 2. Examples

CHAPTER

THREE

MORE COMPLEX USES

In addition to peeking and popping items, which risks raising a StopIteration exception if there’s nothing left on the
internal queue, we can utilise peekOr and popOr to deliver a default value instead. The default value is passed as an
optional parameter and falls back to None.

We can also peek and pop multiple values using multiPeekOr and multiPopOr, which return generators. These support
skipping over values so that you can get the 2nd and 3rd value without getting the first e.g.

(second, third) = Pushable("pqr").multiPop(skip=1, count=2)
print(second, third)
Prints: q r

Lastly, we can push multiple items with multiPush:

count_up.multiPush("cat", "dog", "rabbit")
print(list(count_up))
Prints: ['cat', 'dog', 'rabbit']

7

pushable, Release 0.1.0

8 Chapter 3. More Complex Uses

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

9

	Basic Usage
	Examples
	More Complex Uses
	Indices and tables

